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Introduction

◮ Factorization and threshold resummation for DIS at x → 1
are usually studied with “diagrammatic” techniques

◮ SCET has the potential to organize factorization proofs
more transparently

◮ People disagree on how this is done (8 papers)

(Manohar ’03, ’05; BP ’05, Chay and Kim ’05; Chen, Idilbi,
Ji ’05, ’06; Becher, Neubert, BP ’06; Idilbi and Mehen ’07)

Will discuss the approach in Becher, Neubert, BP



Kinematics and momentum scales in DIS

q2 = −Q2

x ≡ Q2

2P·q

◮ Nucleon: P2 = m2 ∼ Λ2
QCD

◮ Final State:

M2
x ≈ Q2(1 − x)

x

Generic x : Q2 ∼ M2
x ≫ Λ2

QCD

Large x : Q2 ≫ M2
x ≫ Λ2

QCD



Factorization at generic x

F ns
2 (x ,Q2) =

∫ 1

x
dξC

( ξ

x
,Q2, µ

)

φq(ξ, µ)

Straightforward for generic x : Λ2
QCD ≪ M2

x ∼ Q2

◮ C is calculated as an expansion in αs(Q ∼ MX )

◮ IR physics in φq (parton distribution function)



Factorization at large x (M2
X ≪ Q2)

F ns
2 (x ,Q2) = H(Q2, µ)

∫ 1

x
dξ J

(

Q2 ξ − x
x

, µ
)

φq(ξ, µ)

◮ H is a “hard function” depending on hard scale Q2

◮ J is a “jet function” depending on jet scale M2
x

◮ φq is the parton distribution function in ξ → 1 limit

Also need resummation (Thomas Becher’s talk)



Where do we stand?

Generic x:
F2 = C ⊗ φq

Large x:
F2 = (H · J) ⊗ φq

Mostly agree that large and generic x are not so different:
◮ (H · J) is C expanded and subfactorized in large x limit
◮ φq is standard PDF in large x limit

Not much agreement in:
◮ The exact structure of IR SCET
◮ SCET description of PDF



Overview

1. Demonstrate factorization of the form C ⊗ φq at large x
diagrammatically to one loop

2. Discuss the subfactorization C → H · J in SCET

3. Discuss connection between large and generic x in SCET
and also power corrections



Hadronic tensor and F2

QCD effects contained in hadronic tensor:

W µν(p,q) = i
∫

d4x eiq·x 〈N(p)|T{J†µ
EM(x) Jν

EM(0)} |N(p)〉

=

(

qµqν

q2 − gµν

)

W1 + . . .

Structure function:

F ns
2 (x ,Q2) =

1
π

Im
∑

q

e2
q x W1(x ,Q

2)

“Non-singlet” component obtained by averaging over different
nucleons



Hadronic tensor in QCD

  

Expand around limit p2 ≪ Q2(1 − x) ≪ Q2

◮ Can’t evaluate, try to factorize



Factorization in DIS

To factorize the hadronic matrix element

W µν = 〈N(P)|T µν |N(P)〉

1) Instead evaluate partonic matrix element

W µν
parton = 〈q(pp)|T µν |q(pp)〉

2) If the partonic structure function sastifies (to all orders)

F2,parton = C ⊗ φq,parton

assume this is true for the QCD structure function as well

F2 = C ⊗ φq



Factorization at one loop

Define coefficient functions through a subtraction:

C(1) ⊗ φ
(0)
q = F (1)

2,parton − C(0) ⊗ φ
(1)
q

PDF:

φ
(1)
q = −1

ǫ

(

P(1)
qq ⊗ φ

(0)
q

)

+ φ
(1)
q,bare

◮ If C(1) is insensitive to IR (poles), have factorization
◮ Can check this loop by loop



One-loop diagrams for hadronic tensor

L
pp

px

q



Typical Loop Integral

L
pp

px

q

I =

∫

[dL]
1

(L + px)2

1
(L + pp)2

1
L2

◮ Integral depends on three scales Q2 ≫ p2
x ≫ p2

p ∼ Λ2
QCD

◮ Advantageous to “expand by regions” in order to factorize
momentum scales at diagrammatic level



Method of regions

1. Split loop integration into regions which aren’t scaleless in
dim. reg.

∫

ddL →
∫

ΛH

ddLh +

∫

Λhc

ddLhc + . . .

2. Expand under integrand in each region before evaluating

3. Integrate the expanded (one-scale) integrand over all
space

4. Set scaleless integrals to zero

◮ Sum of the hard, hard-collinear, and IR regions recovers
full integral, expanded for Q2 ≫ p2

x

◮ Overlap between regions only in scaleless integrals
(but must check explicitly since there’s no proof)



Regions for DIS in Breit Frame (n+p, p⊥, n−p)

Perturbative (x̄ ≡ 1 − x)

hard Q(1,1,1)

hard-collinear (collinear with jet) Q(1,
√

x̄ , x̄)

Non-perturbative (Q2λ2 ∼ Λ2
QCD)

anti-collinear (collinear with proton) Q(λ2, λ,1)

soft-collinear (messenger) Q(λ2, λ
√

x̄ , x̄)

Not everyone finds the same IR regions. Return to this later.



Regions in individual diagrams

h,hc,c,scpp

px

hc,sc

hc c



Graphical representation of regions

  

Tempting to associate ”soft-collinear” with ”soft”



One-loop partonic structure function (on shell)

W1 = −Q2

p2
x

CFαs

4π
[Wh + Whc + Wc̄ + Wsc]

Wh = − 4
ǫ2

− 6
ǫ

+
4
ǫ

ln
Q2

µ2 − 2 ln2 Q2

µ2 + 6 ln
Q2

µ2 +
π2

3
− 16

Whc =
4
ǫ2

+
3
ǫ
− 4
ǫ

ln
−p2

x

µ2 + 2 ln2 −p2
x

µ2 − 3 ln
−p2

x

µ2 − π2

3
+ 7

Wc̄ = scaleless integral = 0

Wsc = scaleless integral = 0

◮ The pole structure in the sum is −Pqq/ǫ at large x
◮ Poles absorbed into φq, so have demonstrated factorization
◮ Finite parts go into C



Factorization in SCET



SCET (hc, c̄, sc)

Now construct an effective theory SCET(hc, c̄, sc)

◮ Introduce effective-theory fields for hc, c̄, sc modes
◮ Derive an effective-theory Lagrangian and current built out

of these fields
◮ Treat loop integrals as in regions calculation (scaleless=0)

Diagrammatic calculations with SCET reproduce regions result

WSCET(hc,c̄,sc) = Whc + Wc̄ + Wsc

◮ Equivalent to diagrammatic factorization order by order
◮ Abstract studies to all orders are (arguably) simpler



Factorization procedure in SCET

1) Match hadronic tensor onto SCET(hc, c̄, sc)

W µν
QCD = H(Q2, µ)W µν

SCET(hc,c̄,sc)

2) Use field definition to decouple sc from jet and calculate J

F2 = H(Q2, µ)
[

J
(

M2
X , µ

)

⊗ 〈N(P)|φ̂SCET(c̄,sc)|N(P)〉
]

3) Show that the matrix element of φ̂SCET(c̄,sc) is the standard
PDF at large x



A subtlety in matching

Hard fluctuations can be integrated out in the current (Manohar)
(

ψ̄γµψ
)

(x) → CV (Q2, µh) χ̄c̄(x−)
[

S†
n+

Sn
−

]

(x−) γµ
⊥χhc(x)

However: Anti-collinear gluons don’t belong in the final-state
jet (because (phc + pc̄) ∼ Q2)

◮ Anti-collinear fluctuations are virtual



Hadronic tensor in SCET(hc, c̄, sc)

hc hc hc

(a) (b) (c)

c sc sc

(d) (e) (f)

c c c

(g) (h) (i)

◮ Graphs (g-i) “forbidden” (and power suppressed)



The hard function in SCET

Current matching
(

ψ̄γµψ
)

(x) → CV (Q2, µh) χ̄c̄(x−)
[

S†
n+

Sn
−

]

(x−) γµ
⊥χhc(x)

◮ C(1)
V ↔ W (1)

h in regions calculation (gauge invariant)

In practice take CV from on-shell quark form factor

CV (Q2, µ) = lim
ǫ→0

Z−1
V (ǫ,Q2, µ) Fbare(ǫ,Q2)

◮ CV known at two loops (Becher et al; Chen, Idilbi, Ji)



The jet function in SCET

hc hc hc

(a) (b) (c)

J ∼ 1
π

Im F .T .
[

〈0|T
{(

W (0)†
hc ξ

(0)
hc

)

(x)
(

ξ̄
(0)
hc W (0)

hc

)

(0)
}

|0〉
]

◮ J(1) ↔ W (1)
hc in regions calculation (both gauge invariant)

◮ Calculated at two loops (Becher and Neubert)
◮ Result can be deduced from CV and F2 (Chen, Idilbi, Ji)



The PDF in SCET

Definition of φq as a matrix element in SCET(c̄, sc):

φq(ξ, µ)
∣

∣

ξ→1

1
2π

∫

dt e−iξt n
−

P〈N(P)|χ̄c̄(tn−)[tn−,0]sc
n/−
2
χc̄(0)|N(P)〉

◮ The fields χc̄ = W †
c̄ ξc̄ communicate only through

soft-collinear exchange
◮ Can show equivalence to QCD PDF in ξ → 1 limit

(Korchemsky and Marchesini ’92 )

Check by determining µ-dependence of φq perturbatively
◮ Find that evolution determined by Pqq expanded for ξ → 1
◮ Related to anomalous dimension of Wilson loop with cusps



IR graphs in SCET(hc, c̄, sc) at one loop

c sc sc

(a) (b) (c)

◮ Graphs (a-c) depend on IR and must go into PDF
◮ Same graphs in SCET(c̄, sc) but with hc propagator

replaced by a soft-collinear Wilson line
◮ The graphs match Korchemsky’s picture of PDF at large x

[they are Z (p2)×(Wilson loop)(x̄) ]



PDF graphs in SCET(hc, c̄, sc)

W IR
1 = −CFαs

4π
Q2

p2
x

[Wc̄ + Wsc]

Off shell:

Wc̄ =
4
ǫ2

+
3
ǫ
− 4
ǫ

ln
−p2

p

µ2 + 2 ln2 −p2
p

µ2 − 3 ln
−p2

p

µ2 − π2

3
+ 8

Wsc = − 4
ǫ2

+
4
ǫ

ln
p2

xp2
p

Q2µ2 − 2 ln2 p2
xp2

p

Q2µ2 − π2

◮ Poles in Wc̄ + Wsc independent of IR regulator p2
p

◮ Imaginary part of sum is Pqq/ǫ

◮ Factorization requires that finite part is renormalized PDF
(with off-shell quarks)



Two Questions

◮ How to match generic and large x with SCET?
◮ The soft-collinear mode depends on x .

Do hadronic power corrections?



Relation between large and generic x

Two reductions at generic x̄ ∼ O(1)

◮ phc ∼ Q(1,
√

x̄ , x̄) ∼ Q(1,1,1) ∼ ph

◮ psc ∼ Q(λ2, λ
√

x̄ , x̄) ∼ Q(λ2, λ,1) ∼ pc̄

Methods for large-x reproduce generic x factorization

F2 = C′ ⊗ φq ; C′ ≡ [H · J]

C′ ⊗ φ recovers part of generic x result singular as x → 1
◮ Factorization works the same at generic and large x

(no new non-perturbative information)
◮ Different from B decay (shape function at large x)



Matching large and generic x

Observation: Power corrections from hard region have no
imaginary part

1
π

Im Wh ∼ 1
π

Im
Q2

p2
x

[

W (1)
h +

p2
x

Q2 W (1)′
h

(

ln
Q2

µ2

)

+ . . .

]

= H(1)J(0)

To match large and generic x away from endpoint just keep
more terms in J

◮ Subleading J can be treated in SCET (Chay and Kim ’05)

◮ Simpler to use method of (Chen,Idilbi, Ji ’06)?

C(1) − H(1)J(0) = H(0)

[

J(1) +
p2

x

Q2 J(1)′ + . . .

]



Non-perturbative power corrections

θscθsc

c

hc

Asc⊥
Asc⊥

c

n+Asc

c

(a) (b) (c)

L(0)
hc ∼ ξ̄hcA⊥

hc∂
⊥
hcξhc L′(b)

hc+sc ∼ ξ̄hcA⊥
sc∂

⊥
hcξhc

L′(b)
hc+sc

L0
∼ A⊥

sc

A⊥
hc

∼ Λ
√

x̄

Q
√

x̄
∼ λ

Power corrections from soft-collinear gluons scale as Λ2/Q2

◮ Works only if “soft” IR mode is x-dependent (soft-collinear)
◮ Same λ2 corrections are known in QCD (Ellis et al ’82)



Summary

Discussed factorization in DIS at large x with
◮ Purely diagrammatic analysis
◮ SCET formalism

Argued that:
◮ Factorization works much the same at large and generic x
◮ At leading order in Λ/Q this is compatible with a

“soft-collinear” IR mode
◮ This seems to also be true of hadronic power corrections,

but only if “soft” interactions with the jet are really
soft-collinear ones
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