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• Precision studies of 
inclusive B-meson decays : 
cornerstone of quark flavor 
physics in and beyond SM

• Rare decays B →Xsγ
– important for |Vub|, etc.

– complementary to 
collider physics

   (bound on top quark 
mass and Higgs mass)

– sensitive to higher 
scales (constrains on 
model building)

Introduction



• Inclusive decay: optical theorem

• Effective Weak Hamiltonian

• Our notation: “Qj-Qk contribution”
• Describe b→s transitions by an effective 

Hamiltonian
• New physics shows up as modified Ci,
	 (or as new operators)

Introduction

Forward B-meson matrix 
elements of local operators

1 Introduction

The radiative B decay B̄ → Xsγ plays an important role in precision determination of the
Standard Model parameter(s), as well as in constraining its possible extensions. It is no wonder
that the study of radiative B decays has been a very active field of research for over 25 years
[1]

The flavor changing neutral current (FCNC) b → sγ does not exist at tree level in the
Standard Model (SM) and only arises at a loop level. As such, it is sensitive to effects of new
physics, either through new heavier particles that can appear in the loop or through tree level
FCNC that can compete with the loop suppressed SM operator. Comparing the predictions
of such models of new physics (e.g. MSSM [2]) to the measured valued of the total branching
ratio of B̄ → Xsγ, allows us to constrain these models. Recently, a first estimate of the NNLO
SM model prediction for the total branching ratio was presented in [3], and was found to be
Br(B̄ → Xsγ) = (3.15±0.23) ·10−4 for Eγ > 1.6 GeV. Including the photon energy cut effects
the total branching ratio changes to Br(B̄ → Xsγ) = (2.98±0.26)·10−4 [4], which is more than
one sigma away from the experimental world average of Br(B̄ → Xsγ) = (3.55 ± 0.26) · 10−4

[5].
The shape of the photon spectrum in B̄ → Xsγ, on the other hand, is sensitive to non

perturbative physics. At lowest order in the 1/mb expansion it is related to the leading order
shape function which is a matrix element of a non local operator. The same matrix element
also arises in semileptonic B decays. As a result the photon spectrum can be used as a non
perturbative input for B̄ → Xu l−ν̄ and allows for a precise determination of |Vub| [6]. [add
more references].

The photon spectrum in B̄ → Xsγ can be calculated using the optical theorem, which
relates it to imaginary part of the forward scattering amplitude. The amplitude itself is given
by:

M = i
∑

j,k

∫
d4x 〈B̄| T{Q†

j(0), Qk(x)}|B̄〉, (1)

T is the time ordering operator and the Qj’s are part of the Weak Hamiltonian (see equation
(62) for the exact definitions). At the lowest order in αs and 1/mb, only the dipole operator
Q7γ is important, beyond that, other operators in the weak Hamiltonian must be included.
In the following we often refer to Qj − Qk contribution to the photon spectrum simply as
“Qj − Qk contribution”.

The amplitude cannot be calculated exactly, of course. All the theoretical calculations
of B̄ → Xsγ utilizes the fact that ΛQCD % mb to express the photon spectrum as a series
of operators suppressed by increasing power of 1/mb. The nature of the operators involved
in the expansion depends on the photon energy cut, Ecut, where the kinematics is such that
0 < Ecut < MB/2. One usually distinguishes between two regions: the “OPE region” and
the “shape-function” region. The OPE region correspond to Ecut → 0, where one has an
expansion in terms of local operators (for the Q7γ − Q7γ contribution). The shape function
region correspond to Ecut → MB/2 (more accurately Ecut ∼ (mb − ΛQCD)/2). In this region
one has an expansion in terms of non local operators, whose matrix elements in momentum
space are called shape functions. The relation between the two regions is that moments of
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• Total decay rate has been calculated in an expansion about heavy 
quark limit using local OPE. (leading power correction~(Λ/MB)2)

• Perturbative QCD corrections require resummation of large logarithms 
→ a lot of efforts from global community

OPE Region

5

NLO      NNLO                                                                     

~25%      ~7%           ~1%           ~3%               ~1%  

Calculable using  
local OPE

LO from T{Q7γ ,Q7γ}

Local OPE doesn’t 
have this order of 
power corrections

+ O(1000) similar graphs + 4-loop anomalous 
dimensions, etc…

New:
non-
local 
effect

Q7γ Q7γ
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• OPE breaks down for differential inclusive decay distribution near 
phase space boundary (Eγ  is near kinematical endpoint): most 
accessible to experiment

• Shape function method is needed to account for non-perturbative 
effect (a twist expansion involving forward matrix elements of 
non-local light-cone operators)

• At lowest order in the 1/mb expansion, it is related to the leading 
order shape function which is a matrix element of a non local 
operator

• SCET (Soft Collinear Effective Theory) is a relevant tool

Shape-function Region
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Subleading Shape Functions

• In the SCET based calculation, the (subleading) shape functions 
are calculated via a two step matching. QCD →  SCET → HQET

• In the first step QCD is matched onto SCET and the hard 
function is extracted.

•  In the second step SCET is matched onto HQET and the jet 
function is extracted. 

• Beyond leading order in 1/mb, the hard, jet, and shape functions are not unique. 

• Subleading hard functions are only known at tree level and it is sufficient to 
analyze the subleading shape functions at tree level.

3

What Do We Know About Wi ?

   

! Leading power factorization

[Bauer, Manohar ; Bosch, Lange, Neubert, GP ]

! Subleading shape functions 

[K. Lee, Stewart; Bosch, Neubert, GP;  Beneke, Campanario, Mannel, Pecjak]

 
! Subleading Perturbative corrections [De Fazio, Neubert] 

 Convolute with LO SF :

! OPE Calculation [Blok, Koyrakh, Shifman, Vainshtein; Manohar, Wise]

 Extract 2nd order power corrections , express in terms of !i x LO SF

  Gil Paz Charmless Inclusive B Decays & Extraction of Vub Cornell University  
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• At ΛQCD/mb, the decay rate 
factorizes into a convolution of 
three objects:

• H - physics at scale μ ≥ mb 
Calculable in PT

• J -  physics at scale         
Calculable in PT

• S - physics at scale μ∼〜～ΛQCD 
Non-perturbative function

Factorization theorem

µ ∼
√

mbΛ

[Korchemsky, Sterman
Bauer, Pirjol, Stewart] 

Dynamics - SF region

• Because of the charm background, forced into regions of phase

space where HQET based OPE is not valid (”OPE breaks

down”)

• We do have a systematic 1/mb expansion, calculated using

SCET:

W̃i ∼ Hu · J ⊗ S +
1

mb

∑

k

hk
u · jk

u ⊗ sk
u + · · ·

• H - physics at scale µ ≥ mb - Calculable in PT

J - physics at scale µ ∼
√

mbΛQCD - Calculable in PT

S - physics at scale µ ∼ ΛQCD - Non perturbative function

• For B̄ → Xsγ near endpoint:

dΓ

dE
∼ Hs · J ⊗ S +

1

mb

∑

k

hk
s · jk

s ⊗ sk
s + · · ·
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Dynamics - SF region

• Because of the charm background, forced into regions of phase

space where HQET based OPE is not valid (”OPE breaks

down”)

• We do have a systematic 1/mb expansion, calculated using

SCET:

W̃i ∼ Hu · J ⊗ S +
1

mb

∑

k

hk
u · jk

u ⊗ sk
u + · · ·

• H - physics at scale µ ≥ mb - Calculable in PT

J - physics at scale µ ∼
√

mbΛQCD - Calculable in PT

S - physics at scale µ ∼ ΛQCD - Non perturbative function

• For B̄ → Xsγ near endpoint:

dΓ

dE
∼ Hs · J ⊗ S +

1

mb

∑

k

hk
s · jk

s ⊗ sk
s + · · ·
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the shape functions are related to the matrix elements of the operators in the OPE region.
Between these two regions lies the “multiscale OPE” (MSOPE) region in which one has a
double expansion in 1/mb and in 1/(mb − 2Ecut) [7].

From an experimental point of view the photon spectrum is well measured in the shape
function region, roughly Eγ ≥ 2.0 GeV [8]. The B factories have managed to push Ecut as
low as 1.8 GeV, which is already in the MSOPE region [8, 9, 10]. Even if experiments will be
able to reduce Ecut further, a good understanding of the physics in the shape function region
is needed for precision extraction of |Vub| from B̄ → Xu l−ν̄ decays.

In the shape function region the photon spectrum can be factorized as a product of hard
and jet functions convoluted with shape functions. The hard and jet functions are calculable
in perturbation theory, while the shape functions are non perturbative. At leading order in
the 1/mb expansion all these function are unique. Currently, the leading order hard function
is known at order αs [7], while the leading order jet function is known at order α2

s [11].
Beyond leading order in 1/mb, the hard, jet, and shape functions are not unique. In 2004
the B̄ → Xu l−ν̄ and the Q7γ − Q7γ subleading shape functions were classified [12, 13, 14]
using Soft-Collinear Effective Theory (SCET). There had been previous studies of subleading
shape functions and their phenomenological implications, but those were limited to a specific
semileptonic spectra [15, 16, 17, 18] or contained some errors [19, 20]. (In 2005 a non SCET
based calculation of the same subleading shape functions was considered in [21]) [mention
Trott & Williamson?]

In the SCET based calculation, the subleading shape functions are calculated via a two step
matching. In the first step QCD is matched onto SCET and the hard function is extracted,
and in the second step SCET is matched onto Heavy Quark Effective Theory (HQET) and the
jet function is extracted. For the matching of QCD to SCET the currents must be matched
to second order in the SCET expansion parameters

√
λ ≡

√

ΛQCD/mb, in order to calculate
the subleading hard function. While the leading [22] and next-to-leading order [23] matching
of the currents are known at order αs, the next-to-next-to-leading order is known only at tree
level [24]. As a result the subleading hard functions are only known at tree level and it is
sufficient to analyze the subleading shape functions at tree level.

For the semileptonic decays and the Q7γ − Q7γ contribution to radiative decays one finds
that at tree level three subleading shape functions are needed: t, u, and v, in the notation of [13]
(a fourth one called s in [13] can be absorbed into the leading order shape function). Roughly
speaking, t, u, and v, are related to the matrix elements of non local chromo-electro-magnetic,
kinetic, and chromo-magnetic operators, respectively. When including O(g2) contributions,
which are not loop suppressed, two new functions arise: fu and fv, which are related to non
local four quark operators. These functions have the same spin structure as u and v and can
be absorbed into them for phenomenological applications.

While the semileptonic decays the subleading shape functions analysis is complete, for
radiative decay only the Q7γ − Q7γ contribution was analyzed in previous studies. In this
work we wish to fill this gap and consider subleading shape functions for B̄ → Xsγ which
arise from the contribution of other operators. We limit ourselves to the phenomenologically
important subleading shape functions that are not suppressed by a loop factor, but otherwise
might contain up to two powers of g. As in [12, 13, 14] we use SCET to analyze the subleading
shape functions. The use of a effective field theory has the advantage of being systematic and

2

Factorization beyond LO (subleading shape function)

[Lee, Stewart
Bosch, Neubert, Paz
Beneke, Campanario, Mannel, Pecjak] 

Dynamics - SF region

• Because of the charm background, forced into regions of phase

space where HQET based OPE is not valid (”OPE breaks

down”)

• We do have a systematic 1/mb expansion, calculated using

SCET:

W̃i ∼ Hu · J ⊗ S +
1

mb

∑

k

hk
u · jk

u ⊗ sk
u + · · ·

• H - physics at scale µ ≥ mb - Calculable in PT

J - physics at scale µ ∼
√

mbΛQCD - Calculable in PT

S - physics at scale µ ∼ ΛQCD - Non perturbative function

• For B̄ → Xsγ near endpoint:

dΓ

dE
∼ Hs · J ⊗ S +

1

mb

∑

k

hk
s · jk

s ⊗ sk
s + · · ·
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• What about other operators for B →Xsγ ?                                          
i.e. Qj-Qk

• Current status of subleading shape function

• Factorization beyond LO:

remaining part of this talk



Classification of Subleading Shape Functions

•  In order to systematically analyze the subleading shape functions, one 
has to match the entire weak Hamiltonian onto SCET.

• The Hamiltonian needs to be matched up to second order in the SCET 
expansion in order to extract the subleading shape functions at order  
1/mb.

• From the entire weak Hamiltonian only a few operators will give 
subleading shape functions which are not loop suppressed.

• The subleading shape functions that are not loop suppressed arise from 
the following contributions:

also allows us to include perturbative corrections in a straightforward way.
In order to systematically analyze the subleading shape functions contributing to B̄ → Xsγ

one has to match the entire weak Hamiltonian onto SCET. As in the case of B̄ → Xu l−ν̄
and the Q7γ − Q7γ contribution to B̄ → Xsγ, the Hamiltonian needs to be matched up to
second order in the SCET expansion in order to extract the subleading shape functions at
order 1/mb. From the entire weak Hamiltonian only a few operators will give subleading
shape functions which are not loop suppressed. For that reason the matching procedure is
described in the appendix. The subleading shape functions that are not loop suppressed arise
from the following contributions: Q7γ − Q8g, Q8g − Q8g, and Q1 − Q7γ .

An unexpected result of our analysis is that the zeroth moment of the new subleading
shape functions does not vanish as one might naively expect. As a result there are 1/mb

corrections to the total B̄ → Xsγ rate which are suppressed by αs but not by a loop factor.
Therefore the analysis presented here has also implications for the total radiative rate. The
phenomenologically most important effect arise from one of the Q7γ −Q8g contributions, and
was analyzed in our previous publication [25]. Here we will also present the contributions from
Q8g − Q8g and Q1 − Q7γ .

The Q8g−Q8g contribution to the photon spectrum [26, 27] and the Q1−Q7γ contributions
to the total rate [28, 29, 30, 31] were discussed before in the literature. As we will see, these
contributions should be reinterpreted. For example, in section 3 we will see that the ln(m2

s/m
2
b)

term that appears in the Q8g−Q8g contribution [26, 27], should be reinterpreted as a sum of two
terms: ln(µ2/m2

b) and ln(m2
s/µ

2). The second term should be replaced by a non local matrix
element, which is obtained by integrating the Q8g −Q8g subleading shape function.[modify!]

The structure of the paper is as follows. In section 2 we give the derivation of the Q7γ−Q8g

subleading shape functions. We go over some of the technical details, which will be suppressed
in the following sections.[continue]

[other issues to decide: intro to SCET, definition of n, n̄,move definition of hc
ahc from the appendix to the introduction?]

2 Q7γ − Q8g Contribution

In this section we start to calculate the various subleading shape functions. The first group
arises from the Q7γ −Q8g contribution. In the appendix we match Q8g onto SCET. There are
three types of possible operators that Q8g can be matched onto (see A.3.2): (i) an operator
with a hard collinear s quark and a hard collinear gluon (ii) an operator with a hard collinear
s quark and an anti hard collinear gluon (iii) an operator with an anti hard collinear s quark
and a hard collinear gluon. Trying to combine each type with Q7γ , it is easy to see that
type (i) can only lead to a loop suppressed contribution. Type (ii) contains a single operator.
When this operator is combined with the O(λ) conversion of a gluon to a photon and two
(soft) quarks the contribution is of second order and must be combined with the zeroth order
Q7γ operator. For type (iii) we have to combine the hard collinear gluon with another hard
collinear gluon. This hard collinear gluon cannot be part of Q7γ since the hard collinear quark
would be left unpaired. The only possibility is to convert the gluon into a hard collinear quark
and a soft quark. The hard collinear quark would then be attached to a zeroth order Q7γ . We

3



NLO matching of       to SCET

• The effective weak Hamiltonian

where we have omitted the overall constants of GF√
2
C1VubV ∗

us. Notice that we have taken the

limit mu → 0 and as a result F (r) → 0.
We know from the previous discussion that ultimately (qγ + qg)2 → 0. If we take the limit

carefully in position space we should find the operator.

Asµ(x) = S†
n̄(x) (iDµSn̄)(x) = −

0∫

−∞

dt n̄ν
(
S†

n̄gGµνSn̄

)
(x + tn̄) , (61)

A NLO matching of Heff to SCET

General issues that need to be resolved

• using X , χ for anti hc quarks

• Changing to calligraphic field for ahc quarks and gluons

• D ↔ ∂ for ahc quarks

• Multipole expansion: e.g. ξ̄χ, ξ̄Ahch

In this section we preform the NLO matching of the weak Hamiltonian into SCET. We first
analyze the structure of the possible operator basis, consistent with the symmetries and kine-
matics of the decay. We then perform the actual matching, first at tree level, and then
including hard quark loops. We will only include operators that have one (anti) hard collinear
gluon, since we will only consider subleading shape functions up to O(g2) and that are not
suppressed by a loop factor.

A.1 The effective weak Hamiltonian

We use the form of the effective Hamiltonian and its operators, as presented in [36]:

Heff =
GF√

2

∑

p=u,c

(
λpC1Q

p
1 + C2Q

p
2 +

∑

i=3,...,6

CiQi + C7γQ7γ + C8gQ8g

)
+ h.c., (62)

where λp = V ∗
psVpb, and

Qp
1 = (p̄b)V −A(s̄p)V −A , Qp

2 = (p̄ibj)V −A(s̄jpi)V −A ,

Q3 = (s̄b)V −A

∑
q(q̄q)V −A , Q4 = (s̄ibj)V −A

∑
q(q̄jqi)V −A ,

Q5 = (s̄b)V −A

∑
q(q̄q)V +A , Q6 = (s̄ibj)V −A

∑
q(q̄jqi)V +A ,

Q7γ =
−e

8π2
mbs̄σµν(1 + γ5)F

µνb, Q8g =
−gs

8π2
mbs̄σµν(1 + γ5)G

µνb. (63)

(add more info?)
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• Possible operator basis: We refer the photon as a “anti-hard-
collinear” (ahc) and the hadronic jet “hard-collinear” (hc).

• Start by listing the fields and their scales in terms of

• notation: 

NLO matching of       to SCET
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2 = (p̄ibj)V −A(s̄jpi)V −A ,

Q3 = (s̄b)V −A

∑
q(q̄q)V −A , Q4 = (s̄ibj)V −A

∑
q(q̄jqi)V −A ,

Q5 = (s̄b)V −A

∑
q(q̄q)V +A , Q6 = (s̄ibj)V −A

∑
q(q̄jqi)V +A ,

Q7γ =
−e

8π2
mbs̄σµν(1 + γ5)F

µνb, Q8g =
−gs

8π2
mbs̄σµν(1 + γ5)G

µνb. (63)

(add more info?)
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A.2 Possible operator basis

The kinematical region of interest for B̄ → Xsγ decays is where both the photon and the
hadronic jet have large energy, but the hadronic jet has an invariant mass of

√
ΛQCD/mb. We

therefore define two light like vectors: n, which is in the direction of the hadronic jet, and n̄,
which is in the direction of momentum of the photon. We refer to the photon as a ”anti hard
collinear” (ahc) and the hadronic jet as ”hard collinear”(hc). (Expand!).

We start by listing the fields that we use and their scaling in terms of λ = ΛQCD/mb. Using
the notation aµ ∼ (n · a, n̄ · a, a⊥), we have:

• Hard-collinear fields: quark ξ ∼ λ1/2, gluon Aµ
hc ∼ (λ, 1, λ1/2), derivative i∂µ

hc ∼ (λ, 1, λ1/2)

• Anti-hard-collinear fields: quark χ ∼ λ1/2, gluon Aµ
h̄c

∼ (1, λ, λ1/2), derivative i∂µ
h̄c

∼
(1, λ, λ1/2), photon Aem

⊥ ∼ λ1/2

• Soft fields: heavy quark h ∼ λ3/2, quark qs ∼ λ3/2, gluon Aµ
s ∼ (λ, λ, λ), derivative

i∂µ
s ∼ (λ, λ, λ),

In constructing the possible operators we assume that the final state can only contain one
anti hc photon, with momentum qµ = n · q n̄

2 . All the other particles need to be hc or soft,
but we can have several anti hc and/or soft particles that will convert to an anti hc photon.
Since our expansion parameter is

√
λ we need to consider operators which are suppressed by

λ compared to the LO, in order to anaslyze the full 1/mb corrections. The possible operators
can then be divided into two classes depending whether they contain a photon field or not. In
this subsection we list the possible operators, suppressing the Lorentz structure. In the next
subsection we will specify it, as well as the Wilson coefficients obtained in the matching.

A.2.1 Operators that contain Aem
⊥

At leading order we can have only one operator:

ξ̄Aem
⊥ h (64)

which scales like λ5/2. At order λ3 we can add only a perp component of an hc gluon or a hc
derivative, leading to:

ξ̄Ahc
⊥ Aem

⊥ h, ξ̄∂hc
⊥ Aem

⊥ h. (65)

At O(λ7/2) we can add 2 perp hc gluon/derivatives (or one of each), or two hc quarks, or soft
derivative/gluon, or a n component of the hc gluon or derivative; 9 operators in total:

ξ̄Ahc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄(Ahc

⊥ ∂hc
⊥ )Aem

⊥ h, ξ̄∂hc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄∂hc

⊥ ∂hc
⊥ Aem

⊥ h

ξ̄n · AhcAem
⊥ h, ξ̄n · ∂hcAem

⊥ h, ξ̄AssoAem
⊥ h, ξ̄Aem

⊥ ∂sh

ξ̄Aem
⊥ h ξ̄ξ (66)
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hc fields: quark
               gluon

               derivative

ahc fields: quark
               gluon

               derivative
                 photon

ξ ∼ λ1/2

Aµ
hc ∼ (λ, 1, λ1/2)

i∂µ
hc ∼ (λ, 1, λ1/2)

χ ∼ λ1/2

Aµ
h̄c
∼ (1, λ,λ1/2)

i∂µ
h̄c
∼ (1, λ,λ1/2)

Aem
⊥ ∼ λ1/2

soft fields: quark
      heavy quark

                  gluon
               derivative

                 

h ∼ λ3/2

qs ∼ λ3/2

Aµ
s ∼ (λ, λ,λ)

i∂µ
s ∼ (λ, λ,λ)

A.1 The effective weak Hamiltonian

We use the form of the effective Hamiltonian and its operators, as presented in [36]:

Heff =
GF√

2

∑

p=u,c

(

λpC1Q
p
1 + C2Q

p
2 +

∑

i=3,...,6

CiQi + C7γQ7γ + C8gQ8g

)

+ h.c., (62)

where λp = V ∗
psVpb, and

Qp
1 = (p̄b)V −A(s̄p)V −A , Qp

2 = (p̄ibj)V −A(s̄jpi)V −A ,

Q3 = (s̄b)V −A

∑

q(q̄q)V −A , Q4 = (s̄ibj)V −A

∑

q(q̄jqi)V −A ,

Q5 = (s̄b)V −A

∑

q(q̄q)V +A , Q6 = (s̄ibj)V −A

∑

q(q̄jqi)V +A ,

Q7γ =
−e

8π2
mbs̄σµν(1 + γ5)F

µνb, Q8g =
−gs

8π2
mbs̄σµν(1 + γ5)G

µνb. (63)

(add more info?)

A.2 Possible operator basis

The kinematical region of interest for B̄ → Xsγ decays is where both the photon and the
hadronic jet have large energy, but the hadronic jet has an invariant mass of

√

ΛQCD/mb. We
therefore define two light like vectors: n, which is in the direction of the hadronic jet, and n̄,
which is in the direction of momentum of the photon. We refer to the photon as a ”anti hard
collinear” (ahc) and the hadronic jet as ”hard collinear”(hc). (Expand!).

We start by listing the fields that we use and their scaling in terms of λ = ΛQCD/mb. Using
the notation aµ ∼ (n · a, n̄ · a, a⊥), we have:

• Hard-collinear fields: quark ξ ∼ λ1/2, gluon Aµ
hc ∼ (λ, 1, λ1/2), derivative i∂µ

hc ∼ (λ, 1, λ1/2)

• Anti-hard-collinear fields: quark χ ∼ λ1/2, gluon Aµ
h̄c

∼ (1, λ, λ1/2), derivative i∂µ
h̄c

∼
(1, λ, λ1/2), photon Aem

⊥ ∼ λ1/2

• Soft fields: heavy quark h ∼ λ3/2, quark qs ∼ λ3/2, gluon Aµ
s ∼ (λ, λ, λ), derivative

i∂µ
s ∼ (λ, λ, λ),

In constructing the possible operators we assume that the final state can only contain one
anti hc photon, with momentum qµ = n · q n̄

2 . All the other particles need to be hc or soft,
but we can have several anti hc and/or soft particles that will convert to an anti hc photon.
Since our expansion parameter is

√
λ we need to consider operators which are suppressed by

λ compared to the LO, in order to anaslyze the full 1/mb corrections. The possible operators
can then be divided into two classes depending whether they contain a photon field or not. In
this subsection we list the possible operators, suppressing the Lorentz structure. In the next
subsection we will specify it, as well as the Wilson coefficients obtained in the matching.
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A.2.1 Operators that contain Aem
⊥

At leading order we can have only one operator:

ξ̄Aem
⊥ h (64)

which scales like λ5/2. At order λ3 we can add only a perp component of an hc gluon or a hc
derivative, leading to:

ξ̄Ahc
⊥ Aem

⊥ h, ξ̄∂hc
⊥ Aem

⊥ h. (65)

At O(λ7/2) we can add 2 perp hc gluon/derivatives (or one of each), or two hc quarks, or soft
derivative/gluon, or a n component of the hc gluon or derivative; 9 operators in total:

ξ̄Ahc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄(Ahc

⊥ ∂hc
⊥ )Aem

⊥ h, ξ̄∂hc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄∂hc

⊥ ∂hc
⊥ Aem

⊥ h

ξ̄n · AhcAem
⊥ h, ξ̄n · ∂hcAem

⊥ h, ξ̄AssoAem
⊥ h, ξ̄Aem

⊥ ∂sh

ξ̄Aem
⊥ h ξ̄ξ (66)

A.2.2 Operators that do not contain Aem
⊥

These operators will be supplemented with a Lagrangian insertion that converts the anti
hc particles to an anti hc photon. We therefore list first the possible conversions. These
conversions can be derived from the SCET Lagrangian for hc or anti hc particles, including
the possibility of the anti hc gluon replaced with anti hc photon.

Each conversion would ”cost” us certain power of λ. In order to see what is the highest order
we need to include in the conversions, we start by considering the lowest order operator in this
class. The order λ2 operator ξ̄h has no anti hc to convert into a photon. Lorentz invariance
dictates that the only order λ5/2 possible is ξ̄Ah̄c

⊥ h. Although there are O(λ0) interactions
between the anti hc gluon/photon and quarks, color conservation forbids the conversion of
one anti hc gluon to only one anti hc photon. In fact, the lowest order conversion possible for
an ahc gluon is of order λ. For higher order operators we need to consider conversion up to
order λ1/2. Ordering them according to number of particles and power counting, we find:

1. (a) O(λ1/2) : χ(χ̄) → Aem
⊥ + qs

(b) O(λ1) : Ah̄c
⊥ → Aem

⊥ + qs + q̄s, Ah̄c
⊥ → Aem

⊥ + As + As

2. (a) O(λ0) : χ̄χ → Aem
⊥

(b) O(λ1/2) : χ̄χ → Aem
⊥ + As

(c) O(λ1/2) : χ(χ̄)Ah̄c
⊥ → Aem

⊥ + qs

(d) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ → Aem
⊥ + As

3. (a) O(λ0) : χ̄χAh̄c
⊥ → Aem

⊥

(b) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ Ah̄c
⊥ → Aem

⊥ ,
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O(λ7/2):

O(λ5/2):

O(λ3):

Possible operator basis

Operators containing photon:

A.2.1 Operators that contain Aem
⊥

At leading order we can have only one operator:

ξ̄Aem
⊥ h (64)

which scales like λ5/2. At order λ3 we can add only a perp component of an hc gluon or a hc
derivative, leading to:

ξ̄Ahc
⊥ Aem

⊥ h, ξ̄∂hc
⊥ Aem

⊥ h. (65)

At O(λ7/2) we can add 2 perp hc gluon/derivatives (or one of each), or two hc quarks, or soft
derivative/gluon, or a n component of the hc gluon or derivative; 9 operators in total:
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⊥ ∂sh

ξ̄Aem
⊥ h ξ̄ξ (66)

A.2.2 Operators that do not contain Aem
⊥

These operators will be supplemented with a Lagrangian insertion that converts the anti
hc particles to an anti hc photon. We therefore list first the possible conversions. These
conversions can be derived from the SCET Lagrangian for hc or anti hc particles, including
the possibility of the anti hc gluon replaced with anti hc photon.

Each conversion would ”cost” us certain power of λ. In order to see what is the highest order
we need to include in the conversions, we start by considering the lowest order operator in this
class. The order λ2 operator ξ̄h has no anti hc to convert into a photon. Lorentz invariance
dictates that the only order λ5/2 possible is ξ̄Ah̄c

⊥ h. Although there are O(λ0) interactions
between the anti hc gluon/photon and quarks, color conservation forbids the conversion of
one anti hc gluon to only one anti hc photon. In fact, the lowest order conversion possible for
an ahc gluon is of order λ. For higher order operators we need to consider conversion up to
order λ1/2. Ordering them according to number of particles and power counting, we find:

1. (a) O(λ1/2) : χ(χ̄) → Aem
⊥ + qs

(b) O(λ1) : Ah̄c
⊥ → Aem

⊥ + qs + q̄s, Ah̄c
⊥ → Aem

⊥ + As + As

2. (a) O(λ0) : χ̄χ → Aem
⊥

(b) O(λ1/2) : χ̄χ → Aem
⊥ + As

(c) O(λ1/2) : χ(χ̄)Ah̄c
⊥ → Aem

⊥ + qs

(d) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ → Aem
⊥ + As

3. (a) O(λ0) : χ̄χAh̄c
⊥ → Aem

⊥

(b) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ Ah̄c
⊥ → Aem

⊥ ,
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A.2.1 Operators that contain Aem
⊥

At leading order we can have only one operator:

ξ̄Aem
⊥ h (64)

which scales like λ5/2. At order λ3 we can add only a perp component of an hc gluon or a hc
derivative, leading to:

ξ̄Ahc
⊥ Aem

⊥ h, ξ̄∂hc
⊥ Aem

⊥ h. (65)

At O(λ7/2) we can add 2 perp hc gluon/derivatives (or one of each), or two hc quarks, or soft
derivative/gluon, or a n component of the hc gluon or derivative; 9 operators in total:

ξ̄Ahc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄(Ahc

⊥ ∂hc
⊥ )Aem

⊥ h, ξ̄∂hc
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⊥ Aem
⊥ h, ξ̄∂hc

⊥ ∂hc
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⊥ h

ξ̄n · AhcAem
⊥ h, ξ̄n · ∂hcAem

⊥ h, ξ̄AssoAem
⊥ h, ξ̄Aem

⊥ ∂sh

ξ̄Aem
⊥ h ξ̄ξ (66)

A.2.2 Operators that do not contain Aem
⊥

These operators will be supplemented with a Lagrangian insertion that converts the anti
hc particles to an anti hc photon. We therefore list first the possible conversions. These
conversions can be derived from the SCET Lagrangian for hc or anti hc particles, including
the possibility of the anti hc gluon replaced with anti hc photon.

Each conversion would ”cost” us certain power of λ. In order to see what is the highest order
we need to include in the conversions, we start by considering the lowest order operator in this
class. The order λ2 operator ξ̄h has no anti hc to convert into a photon. Lorentz invariance
dictates that the only order λ5/2 possible is ξ̄Ah̄c

⊥ h. Although there are O(λ0) interactions
between the anti hc gluon/photon and quarks, color conservation forbids the conversion of
one anti hc gluon to only one anti hc photon. In fact, the lowest order conversion possible for
an ahc gluon is of order λ. For higher order operators we need to consider conversion up to
order λ1/2. Ordering them according to number of particles and power counting, we find:

1. (a) O(λ1/2) : χ(χ̄) → Aem
⊥ + qs

(b) O(λ1) : Ah̄c
⊥ → Aem

⊥ + qs + q̄s, Ah̄c
⊥ → Aem

⊥ + As + As

2. (a) O(λ0) : χ̄χ → Aem
⊥

(b) O(λ1/2) : χ̄χ → Aem
⊥ + As

(c) O(λ1/2) : χ(χ̄)Ah̄c
⊥ → Aem

⊥ + qs

(d) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ → Aem
⊥ + As

3. (a) O(λ0) : χ̄χAh̄c
⊥ → Aem

⊥

(b) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ Ah̄c
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⊥ ,
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A.2 Possible operator basis

The kinematical region of interest for B̄ → Xsγ decays is where both the photon and the
hadronic jet have large energy, but the hadronic jet has an invariant mass of

√
ΛQCD/mb. We

therefore define two light like vectors: n, which is in the direction of the hadronic jet, and n̄,
which is in the direction of momentum of the photon. We refer to the photon as a ”anti hard
collinear” (ahc) and the hadronic jet as ”hard collinear”(hc). (Expand!).

We start by listing the fields that we use and their scaling in terms of λ = ΛQCD/mb. Using
the notation aµ ∼ (n · a, n̄ · a, a⊥), we have:

• Hard-collinear fields: quark ξ ∼ λ1/2, gluon Aµ
hc ∼ (λ, 1, λ1/2), derivative i∂µ

hc ∼ (λ, 1, λ1/2)

• Anti-hard-collinear fields: quark χ ∼ λ1/2, gluon Aµ
h̄c

∼ (1, λ, λ1/2), derivative i∂µ
h̄c

∼
(1, λ, λ1/2), photon Aem

⊥ ∼ λ1/2

• Soft fields: heavy quark h ∼ λ3/2, quark qs ∼ λ3/2, gluon Aµ
s ∼ (λ, λ, λ), derivative

i∂µ
s ∼ (λ, λ, λ),

In constructing the possible operators we assume that the final state can only contain one
anti hc photon, with momentum qµ = n · q n̄

2 . All the other particles need to be hc or soft,
but we can have several anti hc and/or soft particles that will convert to an anti hc photon.
Since our expansion parameter is

√
λ we need to consider operators which are suppressed by

λ compared to the LO, in order to anaslyze the full 1/mb corrections. The possible operators
can then be divided into two classes depending whether they contain a photon field or not. In
this subsection we list the possible operators, suppressing the Lorentz structure. In the next
subsection we will specify it, as well as the Wilson coefficients obtained in the matching.

A.2.1 Operators that contain Aem
⊥

At leading order we can have only one operator:

ξ̄Aem
⊥ h (64)

which scales like λ5/2. At order λ3 we can add only a perp component of an hc gluon or a hc
derivative, leading to:

ξ̄Ahc
⊥ Aem

⊥ h, ξ̄∂hc
⊥ Aem

⊥ h. (65)

At O(λ7/2) we can add 2 perp hc gluon/derivatives (or one of each), or two hc quarks, or soft
derivative/gluon, or a n component of the hc gluon or derivative; 9 operators in total:

ξ̄Ahc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄(Ahc

⊥ ∂hc
⊥ )Aem

⊥ h, ξ̄∂hc
⊥ Ahc

⊥ Aem
⊥ h, ξ̄∂hc

⊥ ∂hc
⊥ Aem

⊥ h

ξ̄n · AhcAem
⊥ h, ξ̄n · ∂hcAem

⊥ h, ξ̄AssoAem
⊥ h, ξ̄Aem

⊥ ∂sh

ξ̄Aem
⊥ h ξ̄ξ (66)
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• In constructing the possible operators we assume that the final 
state  can only contain one ahc photon 

• All the other particles need to be hc or soft, but  we can have 
several ahc and/or soft particles that will convert to an ahc 
photon



A.2.2 Operators that do not contain Aem
⊥

These operators will be supplemented with a Lagrangian insertion that converts the anti
hc particles to an anti hc photon. We therefore list first the possible conversions. These
conversions can be derived from the SCET Lagrangian for hc or anti hc particles, including
the possibility of the anti hc gluon replaced with anti hc photon.

Each conversion would ”cost” us certain power of λ. In order to see what is the highest order
we need to include in the conversions, we start by considering the lowest order operator in this
class. The order λ2 operator ξ̄h has no anti hc to convert into a photon. Lorentz invariance
dictates that the only order λ5/2 possible is ξ̄Ah̄c

⊥ h. Although there are O(λ0) interactions
between the anti hc gluon/photon and quarks, color conservation forbids the conversion of
one anti hc gluon to only one anti hc photon. In fact, the lowest order conversion possible for
an ahc gluon is of order λ. For higher order operators we need to consider conversion up to
order λ1/2. Ordering them according to number of particles and power counting, we find:

1. (a) O(λ1/2) : χ(χ̄) → Aem
⊥ + qs

(b) O(λ1) : Ah̄c
⊥ → Aem

⊥ + qs + q̄s, Ah̄c
⊥ → Aem

⊥ + As + As

2. (a) O(λ0) : χ̄χ → Aem
⊥

(b) O(λ1/2) : χ̄χ → Aem
⊥ + As

(c) O(λ1/2) : χ(χ̄)Ah̄c
⊥ → Aem

⊥ + qs

(d) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ → Aem
⊥ + As

3. (a) O(λ0) : χ̄χAh̄c
⊥ → Aem

⊥

(b) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ Ah̄c
⊥ → Aem

⊥ ,

Using this table we can list all the possible operators that do not contain a photon. The
lowest order operator is of order λ3 and unique:

ξ̄hχ̄χ. (67)

At order λ7/2 we have several possibilities and we list them according to decreasing power of
conversions:

ξ̄Ah̄c
⊥ h

ξ̄hξ̄χ, ξ̄hχ̄ξ, ξ̄Ah̄c
⊥ Ah̄c

⊥ h

ξ̄(Ah̄c
⊥ )3h, ξ̄Ahc

⊥ hχ̄χ, ξ̄hχ̄Ah̄c
⊥ χ, ξ̄∂hc

⊥ hχ̄χ, ξ̄hχ̄∂h̄c
⊥ χ, ξ̄hχ̄∂h̄c

⊥ χ. (68)

Knowing the general structure of the operators, we are ready to start the matching itself. We
will separate it into two parts: one that does not contain the effects of quark loops (”Tree
level matching”), and one that does (”Loop matching”). In both cases we have to consider
the effects of Q7γ ,Q8g and the four quark operators.
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⊥
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conversions can be derived from the SCET Lagrangian for hc or anti hc particles, including
the possibility of the anti hc gluon replaced with anti hc photon.

Each conversion would ”cost” us certain power of λ. In order to see what is the highest order
we need to include in the conversions, we start by considering the lowest order operator in this
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dictates that the only order λ5/2 possible is ξ̄Ah̄c
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between the anti hc gluon/photon and quarks, color conservation forbids the conversion of
one anti hc gluon to only one anti hc photon. In fact, the lowest order conversion possible for
an ahc gluon is of order λ. For higher order operators we need to consider conversion up to
order λ1/2. Ordering them according to number of particles and power counting, we find:
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⊥ → Aem

⊥

(b) O(λ1/2) : Ah̄c
⊥ Ah̄c

⊥ Ah̄c
⊥ → Aem

⊥ ,

Using this table we can list all the possible operators that do not contain a photon. The
lowest order operator is of order λ3 and unique:

ξ̄hχ̄χ. (67)

At order λ7/2 we have several possibilities and we list them according to decreasing power of
conversions:

ξ̄Ah̄c
⊥ h

ξ̄hξ̄χ, ξ̄hχ̄ξ, ξ̄Ah̄c
⊥ Ah̄c

⊥ h

ξ̄(Ah̄c
⊥ )3h, ξ̄Ahc

⊥ hχ̄χ, ξ̄hχ̄Ah̄c
⊥ χ, ξ̄∂hc

⊥ hχ̄χ, ξ̄hχ̄∂h̄c
⊥ χ, ξ̄hχ̄∂h̄c

⊥ χ. (68)

Knowing the general structure of the operators, we are ready to start the matching itself. We
will separate it into two parts: one that does not contain the effects of quark loops (”Tree
level matching”), and one that does (”Loop matching”). In both cases we have to consider
the effects of Q7γ ,Q8g and the four quark operators.
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O(λ7/2):

O(λ3):

1. (a) O(λ1/2) : χ(χ̄)→ Aem
⊥ + qs

(b) O(λ1) : Ah̄c
⊥ → Aem

⊥ + qs + q̄s, Ah̄c
⊥ → Aem

⊥ + As + As

2. (a) O(λ0) : χ̄χ→ Aem
⊥

(b) O(λ1/2) : χ̄χ→ Aem
⊥ + As

(c) O(λ1/2) : χ(χ̄)Ah̄c
⊥ → Aem

⊥ + qs

(d) O(λ1/2) : Ah̄c
⊥Ah̄c

⊥ → Aem
⊥ + As

3. (a) O(λ0) : χ̄χAh̄c
⊥ → Aem

⊥

(b) O(λ1/2) : Ah̄c
⊥Ah̄c

⊥Ah̄c
⊥ → Aem

⊥ ,

Operators without photon

-need Lagrangian insertion: cost power counting in λ



Q7γ :

Q8g:

Q1c:

s s

Subleading shape functions that are not loop 
suppressed

LO NLO

NLO

NNLO
and C1 is large

O(λ7/2):

O(λ5/2):

O(λ3):

LO

NLO

NNLO



q

q

q

q

Figure 1: Diagrams contributing to the first Q7γ −Q8g subleading shape function. The double
lines represent heavy-quark fields hv. The vertical dashed lines indicate cuts of the relevant
propagators. The mirror images of the diagrams are not shown.

Since the “sterile” fields do not interact with the soft gluons and they have no overlap with
B meson states, they must be contracted:

T
{

χ(0)(u), χ̄(0)(v)
}

=
/̄n

2

∫

d4k

(2π)4

in · k
k2 + iε

e−ik(u−v) (5)

T
{

Aa,(0)
α (u), Āb,(0)

β (v)
}

= i

∫

d4l

(2π)4

(−gαβ
)δab

l2 + iε
e−il(u−v) (6)

T
{

ξ(0)(u), ξ̄(0)(v)
}

=
/n

2

∫

d4p

(2π)4

in̄ · p
p2 + iε

e−ip(u−v). (7)

Formally, in this step factorization takes place. Next we insert a complete set of photon states:

∫

d3q

(2π)3 2Eγ

∑

λ

|γλ(q)〉〈γλ(q)|. (8)

5

The final expression for the amplitude is:

M =
∑

q

∫

d3q

(2π)32Eγ
A · (n · q)

∫

d4x
d4p

(2π)4
e−i(mbv−q)xeipx n̄ · p

p2 + iε
· 2C7C8

{
∫

dy+ dz+ [θ(y+ − z+)θ(−y+) − θ(z+ − y+)θ(−z+)]

〈B̄|h̄(0)/̄nN(0, x−)N̄A(x−, x−)h(x−)Q̄(0, z+)/̄nT A
Q(0, y+)|B̄〉

−
∫

dy+ dz+ [θ(−y+)θ(−z+)]

〈B̄|h̄(0)γ5 /̄nN(0, x−)N̄A(x−, x−)h(x−)Q̄(0, z+)γ5 /̄nT A
Q(0, y+)|B̄〉

}

.

(18)

The expression in the curly brackets in (18) is a complex function of x−, let us call it f(x−).
We would like the Fourier transform of this function to be the subleading shape function. In
order for this function to be real we must have f(x−) = f ∗(−x−). In our case the function
does not have this property. This is not an obstacle in practice, since the imaginary part of
M should come solely from the s quark propagator (or more generally the jet function). As
a result the expression for the photon spectrum would be sensitive only to the real part of
f(x−). Graphically this correspond to cutting only the s quark line. In the expression for
the photon spectrum we therefore decompose 2f(x−) = [f(x−) + f ∗(−x−)]+[f(x−) − f ∗(x−)]
and ignore the second term. We therefore define the subleading shape function.

∫

dω e−
i
2
ωn̄·xf78a(ω) =

1

2MB

∑

q

eq

∫

dy+ dz+

{[

θ(y+ − z+)θ(−y+) − θ(z+ − y+)θ(−z+)

]

[

〈B̄|h̄(0)/̄nN(0, x−)N̄A(x−, x−)h(x−)Q̄(0, z+)/̄nT A
Q(0, y+)|B̄〉

+ 〈B̄|h̄(0)/̄nN(0,−x−)N̄A(−x−,−x−)h(−x−)Q̄(0, z+)/̄nT A
Q(0, y+)|B̄〉∗

]

−
[

θ(−y+)θ(−z+)

]

[

〈B̄|h̄(0)γ5 /̄nN(0, x−)N̄A(x−, x−)h(x−)Q̄(0, z+)γ5 /̄nT A
Q(0, y+)|B̄〉

+ 〈B̄|h̄(0)γ5 /̄nN(0,−x−)N̄A(−x−,−x−)h(−x−)Q̄(0, z+)γ5 /̄nT A
Q(0, y+)|B̄〉∗

]}

. (19)

From the optical theorem Γ = ImM/MB. Taking the imaginary part of n̄ · p/(p2 + iε) and
using the definition of f78a, we find [add more details?]:

dΓ78a

dEγ
=

G2
Fα|VtbV ∗

ts|2C2
7γm

2
b

2π4

(

E2
γπαs

C8g

C7γ

∫

dω δ(n · p + ω)f78a(ω)

)

(20)

9∫
dω e−

i
2 ωn̄·xf78a(ω) =

−1
MB

∑

q

eq

{ ∫ 0

−∞
dy+

∫ 0

−∞
dz+〈B̄|h̄(0) · · · q̄(z+)q(y+) · · · h(x−)|B̄〉

}

Q7ᵧ-Q8g

Non-local operators from ahc gluon

Subleading shape function

• give rise to 4-quark 
operators containing 
not only s quarks, 
but also light u,d 
quarks



• Contribution to total rate: (parameterized by matrix element of tri-local operators)

Q7ᵧ-Q8g (non-local enhancement)

Non-local operators

∫

dω f78a(ω) =
1

2MB

∑

q

eq

{
∫

dy+ dz+

[

θ(y+ − z+)θ(−y+) − θ(z+ − y+)θ(−z+)

]

[

〈B̄|h̄(0)/̄nT Ah(0)q̄(0, z+)/̄nT Aq(0, y+)|B̄〉 + 〈B̄|h̄(0)/̄nT Ah(0)q̄(0, y+)/̄nT Aq(0, z+)|B̄〉
]

−
∫

dy+ dz−θ(−y+)θ(−z+)

[

〈B̄|h̄(0)γ5 /̄nT Ah(0)q̄(0, z+)γ5 /̄nT Aq(0, y+)|B̄〉 + 〈B̄|h̄(0)γ5 /̄nT Ah(0)q̄(0, y+)γ5 /̄nT Aq(0, z+)|B̄〉
]}

.

(26)

The first integral vanishes since the integrand is antisymmetric under the interchange of
y+ and z+. The second integral simplifies to:

∫

dω f78a(ω) =
−1

MB

∑

q

eq

{
∫ 0

−∞
dy+

∫ 0

−∞
dz+〈B̄|h̄(0)γ5 /̄nT Ah(0)q̄(0, z+)γ5 /̄nT Aq(0, y+)|B̄〉

}

.

(27)

We can slightly change the Dirac structure:

〈B̄|h̄(0)γ5 /̄nT Ah(0)q̄(0, z+)γ5 /̄nT Aq(0, y+)|B̄〉 = −〈B̄|h̄(0)(1−γ5)/̄nT Ah(0)q̄(0, z+)γ5 /̄nT Aq(0, y+)|B̄〉,
(28)

since the new extra term contains odd number of γ5’s and therefore vanishes. Applying Dirac
and color Fiertz transformation and setting y+ ≡ tn̄, z+ ≡ sn̄ we have:

∑

q

eq h̄(0)(1 − γ5)/̄nT Ah(0)q̄(0, sn̄)γ5 /̄nT Aq(0, tn̄) =
2

Nc
[CF (O1 + O2) − (T1 + T2)] , (29)

where as in [25] we define:

O1 =
∑

q

eq h̄v(0) ΓR q(tn̄) q̄(sn̄) ΓR hv(0) ,

O2 =
∑

q

eq

2
h̄v(0) ΓRγ⊥α q(tn̄) q̄(sn̄) γα

⊥ΓR hv(0) ,

T1 =
∑

q

eq h̄v(0) ΓR taq(tn̄) q̄(sn̄) ΓR tahv(0) ,

T2 =
∑

q

eq

2
h̄v(0) ΓRγ⊥α taq(tn̄) q̄(sn̄) γα

⊥ΓR tahv(0) ,

with ΓR = /̄n (1 + γ5)/2. Inserting (27) and (29) into (23) we finally find:

Γ78a = −Γ77
C8g

C7γ

4παs

Nc mb

1

MB

∫ 0

−∞
ds

∫ 0

−∞
dt〈B̄|CF (O1 + O2) − (T1 + T2)|B̄〉, (30)

11

§Due to the interference with Q7ᵧ ,the effect is centered at large photon energy 
(cannot be eliminated by a cut)

§Note that in B →Xsγ, one does not sum over all the cut

§Process is not really inclusive (partonic sub-structure of photon)



Q7ᵧ-Q8g (non-local enhancement)

• Model estimates: 
• Reliable field-theoretical estimates of these effects are very 

difficult to obtain.

• In particular, lattice QCD is unable to handle operators with 
component fields separated by light-like distances

• Naive dimensional analysis suggests that             
•                                          which could easily amount to a 5% 

correction to the decay rate.

• In more traditional applications of the OPE to inclusive B-meson 
decays, four-quark operators contribute at order (Λ/mb)3 in the 
heavy-quark expansion. 

• The non-local operators lead to enhanced power corrections of 
order Λ/mb, because the two ``vertical'' propagators have 
virtualities of order mb/Λ and so introduce two powers of soft 



Q7ᵧ-Q8g (non-local enhancement)

• Vacuum insertion approximation
– motivated by large-Nc counting rules.

– well tested for local 4-quark operator in the analysis of B-hadron 
lifetimes.

– Matrix elements of the operators O2 and T{1,2} vanish in the VIA, 
either due to the color-octet structure of the quark bilinear T{1,2}  or 
due to the fact that there is no external perpendicular Lorentz 
vector available (O2 and T{1,2} ): O1 is the only operator 
contribute in VIA approximation

– The integral over the position-space distribution amplitude can be 
evaluated to yield



Q7ᵧ-Q8g (non-local enhancement)

• Vacuum Insertion Approximation

– where eq=2/3 for decays of B- mesons, while eq =-1/3 for 
decays of mesons. Effect between –0.3 eq %  and  –19 eq % 
(depending on the value of inverse moment of B-meson 
LCDA)

• Flavor-dependent rate asymmetry

– this amount to an effect between -2% and -19%, which is 
consistent with the recent BarBar measurement:

which could amount to an effect between −2% and −19%.
When considering these estimates one should keep in

mind that the VIA can at best provide a very simple
model of the effect of the non-local four-quark operators
in (1). Conservatively, we can therefore not exclude that
the type of enhanced power corrections identified in this
Letter could contribute to the total B̄ → Xsγ decay rate
at the 5% level. The magnitude of the flavor-specific ef-
fects studied above could be probed by a measurement of
the flavor asymmetry (3); but there are other four-quark
operator contributions with flavor structure b̄s s̄b (see e.g.
the bottom left diagram in Figure 1), whose matrix ele-
ments vanish in the VIA but could still be significant in
real QCD. Their contributions are flavor-blind and hence
not tested by (3).

The Babar collaboration has measured the
flavor-dependent rate asymmetry in eq. (3), find-
ing the value (1.2 ± 11.6 ± 1.8 ± 4.8)% , where the
errors are statistical, systematic and due to the
production ratio B̄0/B−, respectively [25]. The
dominant error is statistical and therefore likely
to decrease when more data is collected.

III. CONCLUSIONS

We have identified a new class of enhanced power cor-
rections to the total inclusive B̄ → Xsγ decay rate, which
cannot be parameterized in terms of matrix elements of
local operators. These effects are nevertheless “calcula-
ble” in the sense that they can be expressed in terms of
subleading shape functions. At tree level, the correspond-
ing operators are tri-local four-quark operators. While
local four-quark operators contribute at order (Λ/mb)3

in the heavy-quark expansion of the total decay rate,
the effects we have explored are enhanced by the non-
local structure of the operators and promoted to the level
of Λ/mb corrections. We have identified and estimated
what we believe are the dominant corrections of this type,
namely those that match the flavor quantum numbers of
the external B-meson states.

Our results imply that a local operator product expan-
sion for the inclusive B̄ → Xsγ decay rate does not ex-
ist. Even at first order in Λ/mb there are hadronic effects
that can only be accounted for in terms of non-local oper-
ators. The precise impact of these power corrections will
be notoriously difficult to estimate using our present com-
mand of non-perturbative QCD on the light cone. While
a naive estimate using the vacuum insertion approxima-
tion suggests that the effects are at the few percent level,
we conclude that they are nevertheless a source of sig-
nificant hadronic uncertainty in the calculation of partial
or total B̄ → Xsγ decay rates. After the perturbative
analysis of the decay rate will have been completed, the
enhanced non-local power corrections will remain as the
dominant source of theoretical uncertainty. A measure-
ment of the flavor-dependent asymmetry (3) could help

to corroborate our numerical estimates of such correc-
tions.
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ss

Figure 2: Diagram contributing to the second Q7γ − Q8g subleading shape function. The
double lines represent heavy-quark fields hv. The mirror images of the diagram is not shown.

which is the result found in [25] up to a factor of 1/MB that arise from our normalization of
the meson states. [Talk about the moments of the f78a in VIA?]

2.2 Q7γ−Q8g subleading shape function from a hard collinear gluon

We need to combine order λ5/2 dipole operators

Q7γ = ξ̄
/̄n

2
(in · ∂ /Aem

⊥ ) (1 + γ5)h

(

−emb

4π2

)

Q8g = χ̄
/n

2

(

in̄ · ∂ /Ahc
⊥

)

(1 + γ5)h

(

−gsmb

4π2

)

,

and order λ1/2 Lagrangian

Lξqg = g
(

q̄ /Ahc
⊥ ξ + ξ̄ /Ahc

⊥ q
)

Lχqγ = eeq (q̄ /Aem
⊥ χ + χ̄ /Aem

⊥ q) .

There are two Feynman diagrams contributing to this subleading shape function and we
show one of them in Figure 2. Unlike the previous subsection the soft quarks must be strange
quarks. In particular we have eq = −1/3.

Following a procedure similar to the previous section, namely, introducing soft Wilson lines
and contracting the hard collinear and anti hard collinear fields, we find:

12

In deriving the last equation we have used:

θ(−y−)θ(y− − x−) = θ(−y−)θ(y− − x−)θ(−x−) =

−θ(−y−)θ(y− − x−)

∫

dn · p
1

2πi

exp (in · p n̄ · x/2)

n · p + iε
. (36)

Using Hermitian conjugation and PT invariance of the strong interactions we can write (35)
as:

M = (−i)2

∫

d3q

(2π)32Eγ

A

4
· (n · q)

∫

d4x
d4p

(2π)4
e−i(mbv−q)xeipx n̄ · p

p2 + iε
2C7C8

∫ 0

x
−

dy−

∫ 0

−∞
dz+

[

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄nT AS†
n(x−, 0)h(x−)|B̄〉

− 〈B̄|h̄(0)(γ5)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄n(γ5)T
AS†

n(x−, 0)h(x−)|B̄〉
]

.

(37)

As before, we have to define a real subleading shape function:
∫

dω e−
i
2
ωn̄·xf78b(ω) =

1

2MB

{

[

∫ 0

x
−

dy−

∫ 0

−∞
dz+

(

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄nT AS†
n(x−, 0)h(x−)|B̄〉

− 〈B̄|h̄(0)(γ5)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄n(γ5)T
AS†

n(x−, 0)h(x−)|B̄〉
)]

+
[

∫ 0

−x
−

dy−

∫ 0

−∞
dz+

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄nT AS†
n(−x−, 0)h(−x−)|B̄〉∗

− 〈B̄|h̄(0)(γ5)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄n(γ5)T
AS†

n(−x−, 0)h(−x−)|B̄〉∗
)]

.

(38)

The contribution of this function to the photon spectrum is:

dΓ78b

dEγ
=

G2
F α|VtbV ∗

ts|2C2
7γm

2
b

2π4

(

E2
γ

4
esπαs

C8g

C7γ

∫

dω δ(n · p + ω)f78b(ω)

)

, (39)

where n · p = mb − 2Eγ and es = −1/3.
As in the previous subsection it is easy to obtain the contribution to the total rate. We

will not calculate it explicitly. We only note that because of the integration over y− in the
definition of f78b there are no 1/mb corrections to the total rate from this function, only 1/m2

b

corrections. Furthermore this contribution would vanish in the VIA since the soft quarks in
the definition of f78b are strange quarks.
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Q7ᵧ-Q8g

Operators from hc gluon

Subleading shape function

In deriving the last equation we have used:

θ(−y−)θ(y− − x−) = θ(−y−)θ(y− − x−)θ(−x−) =

−θ(−y−)θ(y− − x−)

∫

dn · p
1

2πi

exp (in · p n̄ · x/2)

n · p + iε
. (36)

Using Hermitian conjugation and PT invariance of the strong interactions we can write (35)
as:

M = (−i)2

∫

d3q

(2π)32Eγ

A

4
· (n · q)

∫

d4x
d4p

(2π)4
e−i(mbv−q)xeipx n̄ · p

p2 + iε
2C7C8

∫ 0

x
−

dy−

∫ 0

−∞
dz+

[

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄nT AS†
n(x−, 0)h(x−)|B̄〉

− 〈B̄|h̄(0)(γ5)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄n(γ5)T
AS†

n(x−, 0)h(x−)|B̄〉
]

.

(37)

As before, we have to define a real subleading shape function:
∫

dω e−
i
2
ωn̄·xf78b(ω) =

1

2MB

{

[

∫ 0

x
−

dy−

∫ 0

−∞
dz+

(

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄nT AS†
n(x−, 0)h(x−)|B̄〉

− 〈B̄|h̄(0)(γ5)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄n(γ5)T
AS†

n(x−, 0)h(x−)|B̄〉
)]

+
[

∫ 0

−x
−

dy−

∫ 0

−∞
dz+

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄nT AS†
n(−x−, 0)h(−x−)|B̄〉∗

− 〈B̄|h̄(0)(γ5)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, z+)Q̄n(y−, 0)/n/̄n(γ5)T
AS†

n(−x−, 0)h(−x−)|B̄〉∗
)]

.

(38)

The contribution of this function to the photon spectrum is:

dΓ78b

dEγ
=

G2
F α|VtbV ∗

ts|2C2
7γm

2
b

2π4

(

E2
γ

4
esπαs

C8g

C7γ

∫

dω δ(n · p + ω)f78b(ω)

)

, (39)

where n · p = mb − 2Eγ and es = −1/3.
As in the previous subsection it is easy to obtain the contribution to the total rate. We

will not calculate it explicitly. We only note that because of the integration over y− in the
definition of f78b there are no 1/mb corrections to the total rate from this function, only 1/m2

b

corrections. Furthermore this contribution would vanish in the VIA since the soft quarks in
the definition of f78b are strange quarks.
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• usual 1/mb2 corrections

• contribution vanish in the VIA: soft quarks in the shape function are strange quarks
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The contribution of this function to the photon spectrum is:
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dEγ
=

G2
F α|VtbV ∗

ts|2C2
7γm

2
b

2π4

(

Eγmb

16
e2

sπαs

C2
8g

C2
7γ

∫

dω δ(n · p + ω)f88(ω)

)

, (44)

where n · p = mb − 2Eγ and es = −1/3.

3.2 Relation to previous calculations

The Q8g − Q8g contribution to the photon spectrum was first considered in [26, 27]. Both
these papers find the result that

dΓ88

dEγ

∣

∣

∣

∣

Eγ→mb/2

= Γ77 ·
C2

8

9C2
7

αsCF

4π

1

mb

{

−6 − 4 ln

[

m2
s

mb(mb − 2Eγ)

]}

, (45)

where we have taken the limit ms → 0 wherever possible, and Γ77 is the leading order total
rate given in (24). Notice the appearance of lnm2

s in the result.
We should be able to recover this result by using the SCET operators calculated in the

appendix. Allowing for contraction of soft fields and loop suppressed contributions, we find
that two Feynman diagrams contribute to the photon spectrum. One arises from combining
the first order operators of equation (75) (called type (i) above) which contains hard collinear
quarks. The second arises from combining the first order operators of equation (76) ( called
type (iii) above) which contains anti hard collinear quarks converted to soft quarks. This
diagram is just the diagram of figure 3 with the soft quarks contracted. The two diagrams are
shown in figure 4.

Calculating the imaginary part of each diagram we find:

dΓhc
88

dEγ

∣

∣

∣

∣

Eγ→mb/2

= Γ77 ·
C2

8

9C2
7

αsCF

4π

2

mb

〈B̄|h̄(1 − γ5)/nh|B̄〉
MB

×
{

−
1

ε
+

1

2
+ γE − ln 4π − ln

[

µ2

mb(mb − 2Eγ)

]}

(46)
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where we have taken the limit ms → 0 wherever possible, and Γ77 is the leading order total
rate given in (24). Notice the appearance of lnm2

s in the result.
We should be able to recover this result by using the SCET operators calculated in the

appendix. Allowing for contraction of soft fields and loop suppressed contributions, we find
that two Feynman diagrams contribute to the photon spectrum. One arises from combining
the first order operators of equation (75) (called type (i) above) which contains hard collinear
quarks. The second arises from combining the first order operators of equation (76) ( called
type (iii) above) which contains anti hard collinear quarks converted to soft quarks. This
diagram is just the diagram of figure 3 with the soft quarks contracted. The two diagrams are
shown in figure 4.

Calculating the imaginary part of each diagram we find:
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8
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where n · p = mb − 2Eγ and es = −1/3.
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where we have taken the limit ms → 0 wherever possible, and Γ77 is the leading order total
rate given in (24). Notice the appearance of lnm2

s in the result.
We should be able to recover this result by using the SCET operators calculated in the

appendix. Allowing for contraction of soft fields and loop suppressed contributions, we find
that two Feynman diagrams contribute to the photon spectrum. One arises from combining
the first order operators of equation (75) (called type (i) above) which contains hard collinear
quarks. The second arises from combining the first order operators of equation (76) ( called
type (iii) above) which contains anti hard collinear quarks converted to soft quarks. This
diagram is just the diagram of figure 3 with the soft quarks contracted. The two diagrams are
shown in figure 4.

Calculating the imaginary part of each diagram we find:

dΓhc
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dEγ
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∣

Eγ→mb/2

= Γ77 ·
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8

9C2
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dΓahc
88

dEγ

∣

∣

∣

∣

Eγ→mb/2

= Γ77 ·
C2

8

9C2
7

αsCF

4π

2

mb

〈B̄|h̄(1 − γ5)/nh|B̄〉
MB

×
{

1

ε
− 2 − γE + ln 4π − ln

[

m2
s

µ2

]}

, (47)

where γE is the Euler constant. If we ignore the residual momentum of the heavy quarks we
have 〈B̄|h̄(1− γ5)/nh|B̄〉/MB = 2. In this case we find that each contribution is divergent, but
their sum is finite and equals (45).

It is now clear how we should interpret this calculation. First, the soft fields should not be
contracted. Instead their diagram gives rise to the subleading shape function f88(ω). Second,
equation (46) should be interpreted as part of the calculation of a subleading jet function. After
renormalization this equation will have the structure of a subleading jet function convoluted
with the leading order shape function (from the matrix element 〈B̄|h̄(1 − γ5)/nh|B̄〉).

This proves that the Q8g − Q8g contribution at order αs factorizes at the shape function
region and can be expressed as a sum of two terms. One is a product of the leading order hard
function (at tree level) with a subleading order jet function convoluted with the leading order
shape function. The second is a product of the leading order hard function (at tree level) with
the leading order jet function (at tree level) convoluted with the subleading shape function
f88(ω). Naively one would expect to get a contribution also from a subleading hard function,
but such a hard function can only arise at order α2

s. [continue?]

4 Q7γ − Q1 Contribution

In this section we will consider the contribution of the four quark operators. The detailed
matching of these operators is performed in the appendix. Although the list of possible
operators is large, only a few would give a contribution which is not loop suppressed. In
particular when we try to combine these operators with themselves or with Q7γ and Q8g, it is
easy to see that we can only have one collinear field in the four quark operator. This leaves
us with four quark operators that contains two anti hard collinear quarks and operators that
contain a photon and a soft gluon (both operators contain a heavy and collinear quarks of
course). For the former type we have to convert the two anti hard collinear fields into a photon
and a soft gluon. Therefore after this conversion they reduce into operators of the latter type.

In principle each of the 10 four quark operators in the weak Hamiltonian can be matched
into this operator, via either massless (u, d, s quarks) or massive (c quark) loop. (As explained
in the appendix, a b quark loop gives a power suppressed contribution.). Of these options
only Qc

1 has a both a large Wilson coefficient C1 ∼ 1 and a large CKM factor VcbV ∗
cs, so it

will give the dominant contribution. This operator is already NNLO (in
√

λ) so it can only
be combined with Q7γ . We now calculated the resulting subleading shape function.
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The contribution of this function to the photon spectrum is:
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, (44)

where n · p = mb − 2Eγ and es = −1/3.

3.2 Relation to previous calculations

The Q8g − Q8g contribution to the photon spectrum was first considered in [26, 27]. Both
these papers find the result that
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= Γ77 ·
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7
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4π
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]}

, (45)

where we have taken the limit ms → 0 wherever possible, and Γ77 is the leading order total
rate given in (24). Notice the appearance of lnm2

s in the result.
We should be able to recover this result by using the SCET operators calculated in the

appendix. Allowing for contraction of soft fields and loop suppressed contributions, we find
that two Feynman diagrams contribute to the photon spectrum. One arises from combining
the first order operators of equation (75) (called type (i) above) which contains hard collinear
quarks. The second arises from combining the first order operators of equation (76) ( called
type (iii) above) which contains anti hard collinear quarks converted to soft quarks. This
diagram is just the diagram of figure 3 with the soft quarks contracted. The two diagrams are
shown in figure 4.

Calculating the imaginary part of each diagram we find:
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Eγ→mb/2

= Γ77 ·
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9C2
7

αsCF

4π
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(46)
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Relation to previous calculations
[Ali, Gerub
Kapustin, Ligeti, Politzer] 

We should be able to recover this result by using SCET

Each diagram is divergent, but the sum is finite and equals to 
the previous calculation
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Figure 3: Diagram contributing to the Q8g −Q8g subleading shape function. The double lines
represent heavy-quark fields hv.

The Dirac structure can be simplified by using:

(1 − γ5)γ
α
⊥/n/̄nγµ

⊥ ⊗ γ⊥
µ /̄n/nγ⊥

α (1 + γ5) = 4(1 − γ5)/n/̄n ⊗ /̄n/n(1 + γ5). (41)

Introducing, as before, the Fourier transform of the soft fields and using Hermitian conjugation
and PT invariance, we find:

M = (−i)2

∫

d3q

(2π)32Eγ
Aeq

1

4

∫

d4x d4 d4p

(2π)4
e−i(mbv−p−q)x (n̄ · p)2

p2 + iε
|C8|2

∫ 0

−∞
dy+

∫ ∞

0

dz+

〈B̄|
[

h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, y+)Q̄n̄(x−, z+)/̄n/nS†
n̄(x−, 0)NA(x−, x−)h(x−)

]

−
[

h̄(0)γ5/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, y+)Q̄n̄(x−, z+)/̄n/nγ5S
†
n̄(x−, 0)NA(x−, x−)h(x−)

]

|B̄〉.

(42)

We can now define the real subleading shape function:

∫

dω e−
i
2
ωn̄·xf88(ω) =

1

2MB

∫ 0

−∞
dy+

∫ ∞

0

dz+

(

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, y+)Q̄n̄(x−, z+)/̄n/nS†
n̄(x−, 0)NA(x−, x−)h(x−)|B̄〉

−〈B̄|h̄(0)γ5/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, y+)Q̄n̄(x−, z+)/̄n/nγ5S
†
n̄(x−, 0)NA(x−, x−)h(x−)|B̄〉

〈B̄|h̄(0)/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, y+)Q̄n̄(−x−, z+)/̄n/nS†
n̄(−x−, 0)NA(−x−,−x−)h(−x−)|B̄〉∗

− 〈B̄|h̄(0)γ5/n/̄nNA(0, 0)Sn̄(0, 0)Qn̄(0, y+)Q̄n̄(x−, z+)/̄n/nγ5S
†
n̄(−x−, 0)NA(−x−,−x−)h(−x−)|B̄〉∗

)

(43)
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The contribution of this function to the photon spectrum is:

dΓ88

dEγ
=

G2
F α|VtbV ∗

ts|2C2
7γm

2
b

2π4

(

Eγmb

16
e2

sπαs

C2
8g

C2
7γ

∫

dω δ(n · p + ω)f88(ω)

)

, (44)

where n · p = mb − 2Eγ and es = −1/3.

3.2 Relation to previous calculations

The Q8g − Q8g contribution to the photon spectrum was first considered in [26, 27]. Both
these papers find the result that

dΓ88

dEγ

∣

∣

∣

∣

Eγ→mb/2

= Γ77 ·
C2

8

9C2
7

αsCF

4π

1

mb

{

−6 − 4 ln

[

m2
s

mb(mb − 2Eγ)

]}

, (45)

where we have taken the limit ms → 0 wherever possible, and Γ77 is the leading order total
rate given in (24). Notice the appearance of lnm2

s in the result.
We should be able to recover this result by using the SCET operators calculated in the

appendix. Allowing for contraction of soft fields and loop suppressed contributions, we find
that two Feynman diagrams contribute to the photon spectrum. One arises from combining
the first order operators of equation (75) (called type (i) above) which contains hard collinear
quarks. The second arises from combining the first order operators of equation (76) ( called
type (iii) above) which contains anti hard collinear quarks converted to soft quarks. This
diagram is just the diagram of figure 3 with the soft quarks contracted. The two diagrams are
shown in figure 4.

Calculating the imaginary part of each diagram we find:

dΓhc
88

dEγ

∣

∣

∣

∣

Eγ→mb/2

= Γ77 ·
C2

8

9C2
7

αsCF

4π

2

mb

〈B̄|h̄(1 − γ5)/nh|B̄〉
MB

×
{

−
1

ε
+

1

2
+ γE − ln 4π − ln

[

µ2

mb(mb − 2Eγ)

]}

(46)
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• Interpretation:
– The soft fields in the second diagram should not be contracted. Instead their 

diagram gives rise to the subleading shape function.

– The contribution from the first diagram should be interpreted as part of the 
calculation of a subleading jet function. 

– After renormalization this equation will have the structure of a subleading jet 
function convoluted with the leading order shape function. (again, factorization 
work)



s

Figure 5: Diagram contributing to the Q7γ − Q1 subleading shape function.

Contracting the collinear fields and inserting a complete set of photon states we find:

M =
G2

F

2

ece2

16π4

1

24m2
c

mb|VtbV
∗
ts|2

∫

d4x

∫

d3q

(2π)32Eγ
(n · q)3

∫

d4p

(2π)4
ei(q+p−mbv)·x n̄ · p

p2 + iε
[

C1C
∗
7〈B̄|h(0)(1 − γ5)γ⊥σ /̄nSn(0)S†

n(x−)gGµαh(x−)εµβρσn̄αn̄ρ|B̄〉

+ C∗
1C7〈B̄|h(1 + γ5)/̄nγ⊥σgGµα(0)Sn(0)S†

n(x−)h(x−)εµβρσn̄αn̄ρ|B̄〉
]

,

(52)

where we have set γβ = nβ /̄n/2 (If we take γβ = γ⊥β we would find that igGµα is given by the
[in̄ ·D, in̄ ·D], which vanishes of course). Using the identity γ⊥σγ5 /̄n = −iε⊥σηγ

η
⊥ /̄n, we find that:

(1 − γ5)γ⊥σ /̄n = γ⊥σ /̄n − iε⊥σηγ
η
⊥ /̄n

(1 + γ5)/̄nγ⊥σ = /̄nγ⊥σ − iε⊥σηγ
η
⊥ /̄n. (53)

Using Hermitian conjugation and PT invariance we can show that

〈B̄|h(0)γργσSn(0)S†
n(x−)gGµα(x−)h(x−)|B̄〉 = −〈B̄|h(0)γσγρgGµα(0)Sn(0)S†

n(x−)h(x−)|B̄〉
(54)

As a result only the second term on the right hand side of (53) will contribute. Thus we find:

M = −
G2

F

2

ece2

16π4

1

24m2
c

mb|VtbV
∗
ts|2

∫

d4x

∫

d3q

(2π)32Eγ
(n · q)3

∫

d4p

(2π)4
ei(q+p−mbv)·x n̄ · p

p2 + iε

8C1C7(−i)〈B̄|h(0)
/̄n

2
γµ
⊥Sn(0)S†

n(x−)gGµαnαh(x−)|B̄〉

(55)
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where γE is the Euler constant. If we ignore the residual momentum of the heavy quarks we
have 〈B̄|h̄(1− γ5)/nh|B̄〉/MB = 2. In this case we find that each contribution is divergent, but
their sum is finite and equals (45).

It is now clear how we should interpret this calculation. First, the soft fields should not be
contracted. Instead their diagram gives rise to the subleading shape function f88(ω). Second,
equation (46) should be interpreted as part of the calculation of a subleading jet function. After
renormalization this equation will have the structure of a subleading jet function convoluted
with the leading order shape function (from the matrix element 〈B̄|h̄(1 − γ5)/nh|B̄〉).

This proves that the Q8g − Q8g contribution at order αs factorizes at the shape function
region and can be expressed as a sum of two terms. One is a product of the leading order hard
function (at tree level) with a subleading order jet function convoluted with the leading order
shape function. The second is a product of the leading order hard function (at tree level) with
the leading order jet function (at tree level) convoluted with the subleading shape function
f88(ω). Naively one would expect to get a contribution also from a subleading hard function,
but such a hard function can only arise at order α2

s. [continue?]

4 Q7γ − Q1 Contribution

In this section we will consider the contribution of the four quark operators. The detailed
matching of these operators is performed in the appendix. Although the list of possible
operators is large, only a few would give a contribution which is not loop suppressed. In
particular when we try to combine these operators with themselves or with Q7γ and Q8g, it is
easy to see that we can only have one collinear field in the four quark operator. This leaves
us with four quark operators that contains two anti hard collinear quarks and operators that
contain a photon and a soft gluon (both operators contain a heavy and collinear quarks of
course). For the former type we have to convert the two anti hard collinear fields into a photon
and a soft gluon. Therefore after this conversion they reduce into operators of the latter type.

In principle each of the 10 four quark operators in the weak Hamiltonian can be matched
into this operator, via either massless (u, d, s quarks) or massive (c quark) loop. (As explained
in the appendix, a b quark loop gives a power suppressed contribution.). Of these options
only Qc

1 has a both a large Wilson coefficient C1 ∼ 1 and a large CKM factor VcbV ∗
cs, so it

will give the dominant contribution. This operator is already NNLO (in
√

λ) so it can only
be combined with Q7γ . We now calculated the resulting subleading shape function.

4.1 Q7γ − Qc
1 subleading shape function

As explained in the appendix [add explanation] the relevant operator is given in momentum
space by

Qc
1 =

(
−eec

4π2

)
1

(qγ + qg)2
[1 − F (r)] i(qα

γ + qα
g )ξ̄γβ(1 − γ5)gGµαh εµβρσFρσ, (48)

where we have omitted the overall constants of GF√
2
C1VcbV ∗

cs. The function F (r) is given in

equation (84) with r = m2
c/(qγ + qg)2, also qγ and qg are the photon and gluon momentum,

18

mq is the quark mass in the loop, q1, ε1 (q2, ε2) are the momentum and polarization of the
photon (gluon), r = m2

q/q
2, q2 = (q1 + q2)2, and

F (r) = 4r arctan2

(
1√

4r − 1

)
(84)

(Note that F (0) = 0).
(The following is optional. This is how we did the calculation, but one could

use Fiertz transformation to bring all the operators to the previous form)
We have also contribution from operators of the form (s̄iΓ2qj) (q̄kΓ1bl) (Q1, Q2 and Q3−Q10

with q = s, b are examples for such operators). The result of these diagrams is very similar:

A =
e

4π

g

4π
(ta)mns̄mΓ2AµνΓ1bnε∗µ1 (q1)ε

∗ν
2 (q2)δijδkl (85)

Using these results we can now match into SCET. Since we have a photon in the operator,
the s quark should be match into hc quark and b into heavy quark h (see section A.2).

A.4.1 Leading order matching

At leading order

qµ
1 = n · q1

n̄µ

2
, qν

2 = n̄ · q2
nν

2

ε∗µ1 → Aµ
⊥em, ε∗ν2 → Aν

⊥hc (86)

Define:

O(1)
loop(x) =

egs

4π2
εαβµν

[
Aν

⊥hc

n̄α

2
n · ∂Aµ

⊥em − Aµ
⊥em

nα

2
n̄ · ∂Aν

⊥hc

]
(ta)ijX̄iγ

β(1 − γ5)
(
S†hj

)
x−

,

(87)
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Q1c-Q7ᵧ

Subleading shape function (1/mb suppression compared to LO)

Non-local operators from 4-quark operator (from loop matching)

Taking mc to be heavy, contribution to the total rate is given by

It is also instructive to compare this function to the function ω t(ω) defined in [13]:

∫
dω e−

i
2ωn̄·xω t(ω) =

1

2MB
(−i)〈B̄|h(0)

/n

2
γµ
⊥Sn(0)S†

n(x−)gGµαnαh(x−)|B̄〉. (57)

This two function are related to each by the transformation /̄n ↔ /n and n̄α ↔ nα, but they are
not identical. If we look at the moments of these two function we will find, using [34], that
they have the same zeroth moment: −λ2, but opposite first moments: ρ2/2 for f71c(ω), and
−ρ2/2 for ω t(ω).

Proceeding as usual, we find that the contribution of this function to the photon spectrum
is given by

dΓ71c

dEγ
=

G2
F α|VtbV ∗

ts|2C2
7γm

2
b

2π4

(
E4

γ

C1

C7γ

ec

3m2
c

1

mb

∫
dω δ(n · p + ω)f71c(ω)

)
, (58)

The new subleading shape function f71c scales like ΛQCD. Since m2
c scales like mbΛQCD we see

that this contribution is suppressed by 1/mb compared to the leading order result (21), as it
should be.

4.2 Contribution to the total rate and relation to previous calcula-
tions

Integrating over the photon momentum we find, using the zeroth moment of f71c, that the
contribution to the total rate is:

Γ71c = −Γ77
C1

C7γ

λ2

m2
c

, (59)

where we have neglected terms suppressed by higher powers of ΛQCD/mb. This result was first
derived in [28] under the assumption that the charm quark can be treated as a heavy quark
(mc ∼ mb). We see that this result holds even if we use the more proper scaling m2

c ∼ mbΛQCD.
The Q7γ−Q1 contribution to the total rate was also considered in [29, 30, 31]. In particular

[29, 30] considered possible higher order terms arising from the Q7γ −Q1 contribution. These
terms are suppressed by increasing powers of mbΛQCD/m2

c in the heavy charm quark limit,
but adopting the scaling m2

c ∼ mbΛQCD they become important.
In terms of our analysis these terms arise from the expansion of F (r) in powers r =

(qγ + qg)2/m2
c . But as we saw in the previous section all the these terms apart from the one

we considered vanish.[modify]

4.3 Q7γ − Qu
1 subleading shape function

As explained in the appendix [add explanation] the relevant operator is given in momentum
space by

Qu
1 =

(
−eeu

4π2

)
1

(qγ + qg)2
i(qα

γ + qα
g )ξ̄γβ(1 − γ5)gGµαh εµβρσFρσ, (60)
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Taking mc to be hc: WORK IN PROGRESS



Summary

• A complete basis of subleading shape function for B →Xsγ is analyzed 

using SCET:  The effective weak Hamiltonian is matched onto SCET to 
NLO in 1/mb and first order in the strong coupling constant gs.

• The result is used to calculate the subleading shape functions 
originating from operators other than Q7ᵧ

• We have identified a new class of enhanced power corrections to the total 
inclusive decay rate from Q7ᵧ-Q8g, which cannot be parameterized in terms 
of matrix elements of local operators. After the perturbative analysis of the 
decay rate being completed, the enhanced non-local power corrections will 
remain as the dominant source of theoretical uncertainty. (~5%)

• SCET reinterprets the previous calculations for Q8g-Q8g


