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Why resummation?

e In problems with widely separated scales
Q:>> Q: fixed order PT is not appropriate

e Large logarithms os" Log"(Q1/Qz) and
as" Log?(Q1/Q2). < Sudakov logarithms

e Scale in coupling? as(Q1) or as(Q2)?
e Standard solution

o Use effective theories to separate the effects
associated with different scales.

e RG evolution 1n the effective theory resums
large log’s.



Resummation for collider processes

e In the past 20 years resummations were
performed for many collider processes
with scale hierarchies

e DIS for x—1, Drell-Yan and Higgs production for
Q?%/s —1, for Q1%/Q? —0.

e c¢'¢ event shapes, hadronic event shapes, ...

e LL for arbitrary observable with parton
shower

¢ Resummation are traditionally performed
with diagrammatic methods.



Resummation with SCET

e With SCET, we can

e resum using RG evolution

e freedom to choose matching scales,
simple connection to fixed order

e properly separate scales

e no coupling constants at unphysically
low scales

* work directly in momentum space

e standard approach takes detour into
moment space.



Threshold resummation

e Relevant for processes in which

Q> > M3 > Agep
e Factorization theorem takes the form

dF:H-J®S|

e Will use DIS as an example, but same
structure for

e B—Xsv, B—>XsI'[", B—>Xulv,
e Drell-Yan, Higgs-production, ...
in the limit Mx? << Q%



o DISasx—1
¢ Resummation
e Traditional method
e Using RG evolution in SCET
* Derivation of RG equations

e Solution of the RG evolution
equations by Laplace transtorm

¢ Connection with trad. method

e Numerical results



Kinematics of DIS
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e Are interested in the limit x—1, more
precisely Q%> Q*(1 —z) > Ajep
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Factorization theorems
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hard scattering coefficient PDF
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Traditional method: moment space

Sterman ‘87, Catani and Trentadue ‘89
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e Convolution in momentum space —
product 1n moment space

e x—1 corresponds to N—co. Perturbation
theory contains os" Log™(V) and as" Log?(/N)

e Split:
CN(sz ,LLf) — gO(Qza :uf) CXPp [GN(sz ,LLf)}



Resummation in moment space

CN(Q27 :uf) — gO(Qza ,Uf) CXP [GN(Q27 :uf)]
=l 1 Landau pole
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Cusp anomalous dim. Anom. dim. of 22

e Ay Bqdetermined by matching to fixed
Order result, NNNLL: Moch, Vermaseren, Vogt ‘05



Mellin Inversion
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e Can only be done numerically

¢ Problem with Fortran PDF’s.



Factorization theorem in SCET

B, Q) = X € 1Cr (@] @ g (@ ) oy

hard part hard-collinear anti-collinear + soft-co
OS form factor propagator in LC gauge PDF for ¢—1
e Any choice of the scale u will lead to large
perturbative logarithms.

e Solve RG for individual parts, evolve to
common scale.
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Resummation by RG evolution: 1. hard part

e RG equation for Cy
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e Solution
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Three-loop anomalous dimension

e On-shell form factor is known to two-loops, divergencies
even to three IOOpS (Moch, Vermaseren Vogt ‘05).

e (Can extract anomalous dimension to three loops:
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Aside: derivation of the RG evolution equation

o Off-shell vector form factor

F(Q%p%, 0", 1) = Cv(Q2, 1) J(p%, 1) J (0", 1) S(p2ge, 1)

/ p?p'”
not the same collinear goft — 5
matrix element as in DIS Q

e Soft matrix element is Wilson line with a
cusp. RG equation:
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Korchemsky &
Radyushkin ‘87



Anomalous dimensions for J and Cv

TB, Hill, Lange, Neubert ‘03
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Resummation by RG evolution: 2. jet function

* RG evolution equation for jet-function
involves convolution

d
dln u
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Convoluted RG-evolution

* RG evolution equations for
e jet-function(s)
e shape function
e pdfin the end-point
e B-meson LCDA
all have the same structure.

e Will now discuss solution in detail

e First solved by Lange & Neubert ‘03. Have
simpler derivation based on Laplace

transform. TB, M.Neubert ‘06



Engineering 101: Laplace transformation

e Definition
LIf)(s) = /O do e f(w)

e [nversion

Cc+100
f@) =g [ dse LI

3 e
e De-convolution
LIf @gl(s) = L[f](s) x L|g](s)
Fog= [ o flw- o))




Star distributions

/Ode (é)iu] flw) = /Ogdw; [f(w) — f(0)]

e for Q=p=1 the *-dist’s reduce to +-dist’s
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e Generating function
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Application to jetfunction RG

e Laplace
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Even more elegantly:

e Rewrite log’s as derivatives:
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Resummation by RG evolution: 3. PDF near the end-point

e Equation (and its solution) can be

obtained from
d

F; %) =
dlIl,LL 2(337@) 0

e (Can obtain 3-loop y’ using
v =% +4Y

\Moch, Vermaseren Vogt ‘04



Result for F»

e Evolve Cy and | from u; and u;to scale

ur, plug into factorization theorem
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e If we assume ¢q(X,ur) ~ (1-x)bMD.
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e Resummed result obtained after plugging
1n fixed order results for coetficient Cy,
jet-function and anom. dimensions.



Difference to traditional approach

e Simple analytic result in momentum space

e No Landau pole ambiguities. No coupling
constant below scales py, piand

e Freedom to choose scales py, pi and py

e Obtain fixed order for yp=pi=p¢ Trivial matching
to fixed order result for generic x.

* Set appropriate scales after integrating

* Avoids large spurious power corrections
discussed by Catani et al. hep-ph/9604351

e FEstimate uncertainties with scale variation



Result for Foms(x)/gg(x)

Q =30GeV, ur=>5GeV, ¢(x,pus)~ (1—x)
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e Default scales: u,?’=0? and u?=0%(1-x)

e Bands obtained by varying these scales a factor of two up
and down.

e Matching scales are fixed in traditional approach.



Comparison with fixed order, us=0

5 . . . . .

e LO(=NLL), NLO, NNLO
e Dashed: fixed order. Solid: resummed.

 Large K-factors.



Comparison with fixed order, low
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e LO(=NLL), NLO, NNLO

e Dashed: fixed order. Solid: resummed.

e Fixed order with u=urfairly close to resummed result!

1

Uy



Comparison with moment space result

My < 1GeV

e Dashed: Mellin inverted moment space results. Solid:
momentum space results.

e Only small numerical differences (different scale
choice, 1/N corrections in moment space).

e Faster convergence of momentum space results.



Connection with standard approach

e Can derive traditional expression for
resummation in moment space from

SCET. With un=Q? ui=Q?*N

Q* gk [ k2 dln j(0,k
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e Note different form of exponent
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Connection with standard approach

e Can relate EFT expression to standard
result. The two agree provided that

2 ~
(1+ 5974+ Byl = /(@) + ¥ (0.
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e fulfilled with two-result from explicit
calculation of J(p?).

e coetficient Bqis not an anomalous
dimension



Momentum space?

e Past controversy about performing

resummations in momentum space.
Claims that

1. exponentiation is incomplete

2. momentum conservation is violated

3. there are large ambiguities, not related
to Landau pole singularities.

Catani, Mangano, Nason, Trentadue ‘96

e 3. are not present in our formalism. Not
sure what 1. and 2. mean.



Integral over structure function at LL

o 1
F@, Q) = | dy By, Q)

e LL, expand exponent in a = T'y%¥
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o With scale choice pr=pn=Q, i = QI —y

= /1; dy Y ery 0y (y, 1s) exp [aln?(1 - y)

Nonintegrable singularity!

e Choose scales after integration!



e Traditionally, resummation for hard processes is
performed in moment space.

e Landau poles (in Sudakov exponent and Mellin inversion)

* Mellin inversion only numerically

e Solving RG equations in SCET, we have obtained
resummed expressions directly in momentum
space.

* (lear scale separation. No Landau pole ambiguities.
* Simple analytic expressions.

e Trivial connection with fixed order expressions.

e Same technology is applicable to many other
processes.

e See Matthias’s talk



